Contrast Enhancement in Color Fundus Images
Work with Signal and Image Processing Laboratory at NIT Trichy
Color fundus image analysis for detecting the retinal abnormalities requires an improved visualization of image attributes with sufficient luminosity, contrast and accurate edge details. A hybrid technique based on singular value equalization using shearlet transform and adaptive gamma correction, followed by contrast limited adaptive histogram equalization (CLAHE) is proposed for the enhancement of luminosity and contrast in color fundus images. Subjective analysis is done based on visualization of the image attributes and the objective analysis is carried out based on the parameters such as Peak signal to noise ratio, entropy, feature similarity index, edge-based contrast measure, quality index and noise suppression measure. The simulation results evince superior noise performance, sufficient luminosity adjustment and improved contrast along with excellent edge detail preservation when compared with the existing state-of-the-art techniques.
This work was published in Biocybernetics and Biomedical Engineering, and can be accessed here